History and Biology of Tetrodotoxin

1909, Tahara:

Crude toxin (ca. 0.2–4 % pure) from globefish ovaries, and named it 'tetrodotoxin'

1950, Yokoo:

Crystalline form TTX from the liver and ovaries of Sphoeroides rubripes. 1964.

Woodward, Tsuda, Goto, and Mosher: Total synthesis of

3D structure confirmed

1972, Kishi:

(±)-TTX

synthesis of (-)-

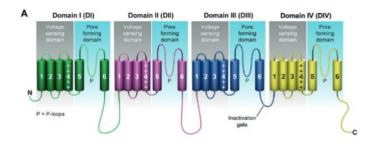
Asymmetric TTX

2003,

Isobe, Du Bois

2008, Sato 2017, Fukuyama 2020, Yokoshima 2022, Trauner

2023, Qi


TTX's interconversion in water

TTX's bioactivity:

Block voltage gated sodium channels(VGSC) impede neuronal communication

TTX's potential application in clinic:

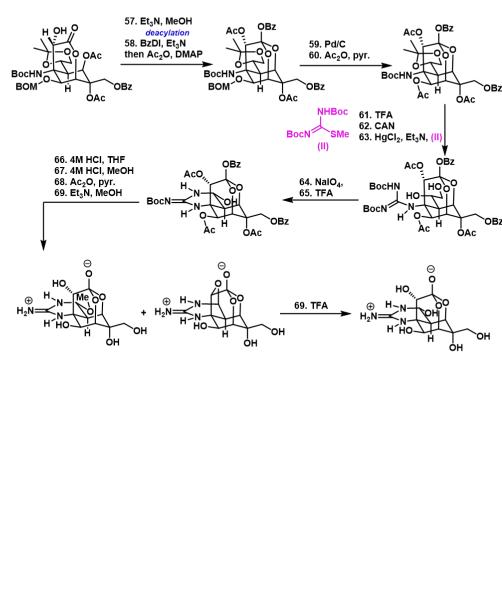
- 1. Anesthetic (No cardiovascularside effects, synergistic effect)
- 2. Cancer (combate cancer, release acute pain)
- 3. Drug addiction (alleviatean acute heroin withdrawal effect)

Isoform	TTX IC ₅₀ [n _M]	Primary localization	Disease link ⁴
TTX-sensiti	не	EU-STATE	
Na _v 1.1	5.9 ^[28,29]	CNS, Heart	Epilepsy 癫痫
Na _v 1.2	7.8[90,31]	CNS	Epilepsy
Na _v 1.3	2.0[31,32]	Embryonic CNS	Nerve injury
Na _v 1.4	4.5[31,33]	Skeletal muscle	Myotonias 肌无力
Na _v 1.6	3.881,34	DRG, H CNS	CNS disorders
Na _v 1.7	5.5 ^[81,35]	DRG	Pain sensation
TTX-resista	nt		
Na _v 1.5	1970[28,31]	Heart, CNS	Cardiac arrhythmias
Na _v 1.8	1330 ^[31,36]	DRG	Pain sensation
Na _v 1.9	59600(37, 38)	DRG	Pain sensation

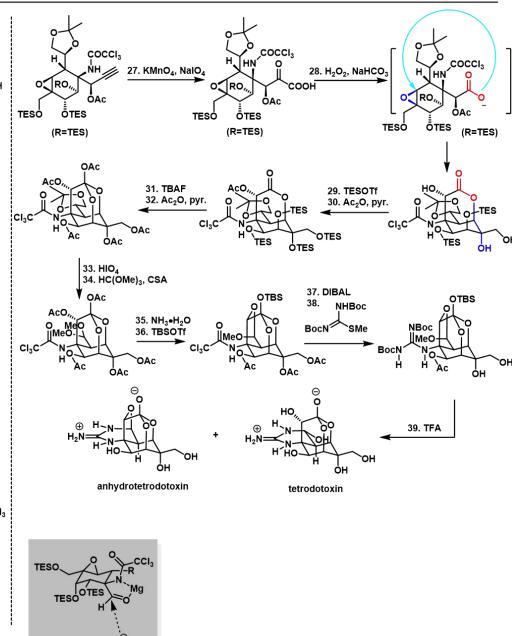
[a] This list represents only a partial list of associated disease states.

[b] CNS: Central nervous system. [c] DRG: Dorsal root ganglion.

1. Kishi's work, 1972


Tetrahedron Lett., **59**, 5127-5132 (1970) *J. Am. Chem. Soc.*, **94**, 9219-9221 (1972)

- Masterpiece of synthetic chemistry
- All regio- and stereoselective manipulations are substrate-controlled
- . No silyl ether protection at that time

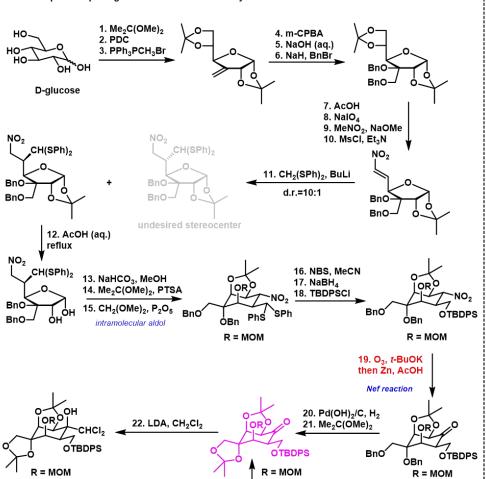

2. Isobe's work, first generation, 2003

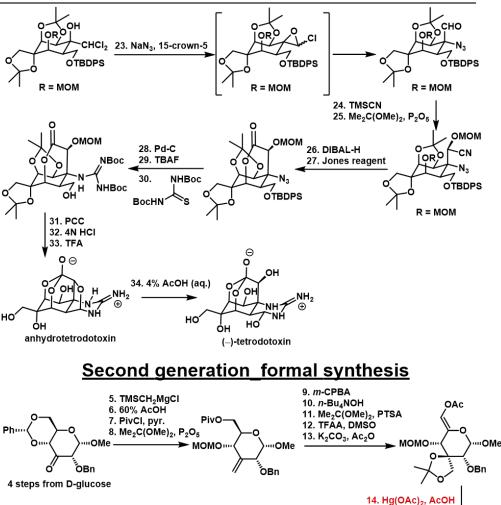
J. Am. Chem. Soc. 125, 8798–8805 (2003) Angew. Chem. Int. Ed. 43, 4782–4785 (2004) Chem. Asian J. 1, 125–135 (2006)

- more than 72 steps in total, 39 steps of 2nd gen.
- use suger as a chiral unit
- . Overmann rearrangement to form tertiary amine

2. Isobe's work, second generation, 2004

3. Du Bois's work, 2003


J. Am. Chem. Soc. 125, 11510 -11511 (2003)


- Rhodium-catalyzed C-H bond activation
- Three rings in one step at final stage

4. Sato's work, 2008

J. Org. Chem. 73, 1234 -1242 (2008) Bull. Chem. Soc. Jpn, 83, 279-287(2010)

- D-glucose as chiral source
- 15 steps to form the cyclohexane ring
- Epoxide opening with azide and form tertiary amine

отвѕ

MOMO

19. BH₃·THF

21. TBDPSCI 22. DMP

20. TBAF

OTBDPS

OAc

ÕВп

Ferrier rearrangement

15. Pd(OH)₂/C, H₂

17. TMSCH₂MgCl 18. TBSCl, imidazole

16. Me₂C(OMe)₂, PTSA

MOMO:

5. Fukuyama's work, 2017

Angew. Chem. Int. ed. 56, 1549 -1552 (2017)

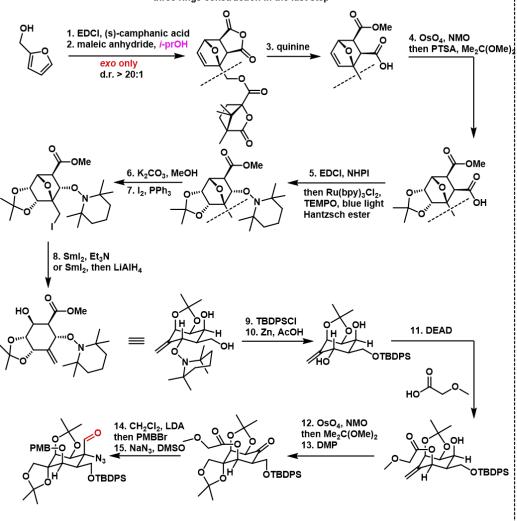
enzymatic deasymmetration

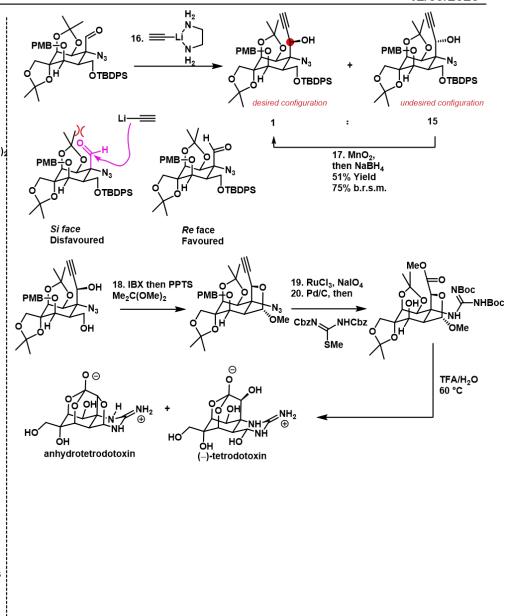
6. Yokoshima's work, 2020

Angew. Chem. Int. ed. 59, 6253 -6257 (2020)

- Diels-Alder reaction with O₂
- Curtius rearrangement to form tertiary amine
- Rhodium catlyzed turning alkyne into cyanide

7. Trauner's work, 2022


Science, 377, 411-415, 2022


- one pot [3+2] cascade reaction to introduce tertiary amine precursor
- ruthenium double-catlyzed cycloisomerization and ketohydroxylation
- 11% overall yield in 22 steps

8. Qi's work, 2023

10.26434/chemrxiv-2023-76wll

- chiral auxiliary assisted Diels-Alder reaction
- Sml₂-mediated epoxide opening
- three rings construction in the last step

