

Leaving Group Ability

Leaving Group	рК _ь	Comment
ŀ	-10	
N ₂	<-10	
TfO ⁻	<-10	
Br ⁻	-9	Excellent to good leaving groups
ArSO3 ⁻	-7	
CI	-7	
CF ₃ CO ₂ -	0.2	
H ₂ PO ₄ ⁻	2.2	
F ⁻	3.2	
CH ₃ CO ₂ -	4.8	
CN-	9.1	
NH ₃	9.2	
RNH ₂ , R ₂ NH, R ₃ N	10	Fair to poor
CH ₃ CH ₂ S ⁻	10.6	leaving groups
CH ₃ O ⁻	15.5	
HO ⁻	15.7	
CH ₃ CH ₂ O ⁻	15.9	
(CH ₃) ₃ CO ⁻	18	
H ₂ N ⁻	36	Not leaving groups
CH3-	49	

Leaving group ability is related with it's pK_b . The less basic the leaving group is, the easier it is to dissociate.

Amines activation strategies

Synthesis of diazo compounds

Diazotization of amine

Prepare diazo compounds from diazo-transfer reagent

Stability of diazo compounds

Sandmeyer reaction(1884)

Mechanism:

The mechanism of the Sandmeyer reaction is not completely understood.

Safer Sandmeyer Reaction

Ritter et al., Science 2024, 384, 446

Aliphatic Amines Activation Strategies in Organic Synthesis

Difunctionalization

C-C Bond Formations

Hu GM

1. ArylRadical Intermediates

Wang et al., Chem. Commun. 2016, 52, 14234

Chen et al., J. Org. Chem. 2018, 83, 5836

Heinrich et al., Angew.Chem., Int. Ed. 2016, 55, 8744

mechanism:

Jiang et al., Eur. J. Org. Chem. 2015, 2015, 5775

C-C Bond Formations

2. Transition-Metal-Catalyzed

C-X Bond Formations

1). C-O Formations

2). C-N Formations

RSC Adv. 2015, 5, 80698

3). C-B Formations

Angew. Chem., Int. Ed. 2010, 49, 1846

Angew.Chem. Int.Ed. 2018, 57, 3641

J. Am. Chem. Soc. 2013, 135, 280

Imine Derivatives

Angew.Chem. Int. Ed. 2018, 57, 744

Imine Derivatives

Pyridinium Salts

Hu GM

Angew. Chem. Int. Ed. 2017, 56, 12336

